Строение сердца у разных классов позвоночных

Кровеносные системы позвоночных животных

Строение сердца у разных классов позвоночных

Мы уже знаем, что транспортная система позвоночных животных называется кровеносной, потому что по ней транспортируется кровь. Она содержит дыхательный пигмент гемоглобин, содержащийся в специальных клетках – эритроцитах. Именно они придают крови красного цвета.

 К типу сосудов, по которым движется кровь, это не имеет никакого отношения. Артериальная кровь обогащенная кислородом, а венозная – углекислотой. Венозная кровь также может двигаться и артериями. В частности, легочными артериями, несущими кровь от сердца к легким, течет венозная кровь.

Кровеносная система позвоночных замкнутая.

Кровь по сосудам движет сердце, которое, в отличие от у беспозвоночных, расположено ближе к брюшной стороне. Сердца позвоночных состоят из предсердий (одного или двух) и желудочков (одного или двух). В предсердиях собирается кровь, в них впадают вены. Желудочки придают основное ускорение крови. Именно поэтому мышечный слой у них развит лучше.

От сердца вперед отходит главная артерия – аорта.

Если разместить позвоночных и беспозвоночных животных головой в одну сторону, то увидим, что кровь в них движется в разных направлениях.

Типичные рыбы имеют один круг кровообращения, а позвоночные, имеющих легкие, – два. Большой круг кровообращения обслуживает все тело, а малый круг – легкие. Количество камер в сердце и кругов кровообращения зависит от образа жизни и строения дыхательной системы позвоночного животного.

Кровеносная система рыб

Рыбы являются первинноводнимы животными, газообмен в которых происходит в жабрах. Кровь из сердца течет по брюшной аорте вперед, в жабры. Здесь происходит газообмен – венозная кровь превращается в артериальную. Спинной аортой и артериями кровь течет ко всем органам. По венам кровь собирается в брюшные вены, впадающие в сердце.

Итак, рыбы имеют один круг кровообращения и двухкамерное сердце. Рядом с сердцем расположены видоизмененные участки сосудов – венозный синус и артериальный конус.

На пути крупных вен у рыб (и почти всех позвоночных) образуются воротные системы печени и почек. Вены заходят в эти органы и разветвляются в них до капилляров.

Таким образом здесь происходит очищение крови от вредных продуктов обмена веществ.

Кровеносная система амфибий

В наземных хордовых, вследствие перехода к легочному дыханию, появляется второй (малый) круг кровообращения. Строение сердца усложняется – в нем происходит разделение камер для венозного и артериального потоков крови.

Сердце амфибии имеет три камеры: два предсердия и один желудочек.

В правое предсердие впадают вены, по которым течет венозная кровь от всего тела, а в левое – легочные с артериальной кровью. Сокращаясь, предсердия одновременно выталкивают кровь в желудочек.

В желудочке венозная и артериальная кровь частично перемешиваются.

Распределение крови с различным содержанием кислорода по разным артериях осуществляет специальный клапан, расположенный в начальном отделе аорты.

Особенностью амфибий является то, что в их кровеносном русле бывает целиком венозная кровь. Это связано с наличием в них газообмена через покровы.

Зачем у амфибий сохраняется возможность перемешивания венозной и артериальной крови в желудочке? Представьте озерную лягушку, которая, спасаясь от хищника, спряталась на дне водоема (или там зимует).

Газообмен обеспечивает кожа. Движение крови малым кругом почти останавливается, и возможность снова вернуть кровь, пришедшую к сердцу из большого круга, к большому кругу помогает лягушке сохранять энергию.

У рептилий сердце разделено на две отдельные половины, одна из которых обслуживает большой круг кровообращения, а вторая – малый. Перегородка между правым и левым желудочками в большинстве рептилий неполная. У крокодилов эта перегородка полная, но отверстие между двумя желудочками остается.

Аорта, что отходит от левого желудочка, делится на парные дуги, которые сливаются под сердцем в спинной аорте. Благодаря такому строению кровеносной системы у рептилий в одни органы (мозг, органы чувств, передние конечности) поступает чистая артериальная кровь, а в других (туловище) – смешанная.

Разделение сердца на правую (с венозной кровью) и левую (с артериальной) половины обусловил у большинства позвоночных смещение сердца влево.

Ведь, чтобы разнести кровь по всему телу, нужно приложить гораздо больше усилий, чем для движения крови малым, легочным кругом. Поэтому левый желудочек имеет более развит мышечный слой.

Эта часть сердца является большей, поэтому смещает положение всего органа.

Кровеносная система птиц и млекопитающих

Основным отличием кровеносных систем рептилий и птиц является то, что у птиц желудочки разделяются полностью. Итак, сердце птиц имеет четыре камеры: два предсердия и два желудочка.

Также на начальном этапе большого круга остается только одна правая дуга аорты. Еще одной особенностью является наличие больших по сравнению с другими позвоночными, артерий, которые поставляют кровь к передним конечностям.

Это следствие приспособления птиц к полету.

У млекопитающих, как и у птиц, сердце четырехкамерное.

Но, в отличие от птиц, у млекопитающих сохраняется левая дуга аорты. Еще одним характерным признаком кровеносных систем млекопитающих является отсутствие воротных систем почек. Это связано с тем, что, в отличие от всех предыдущих групп, в почках млекопитающих фильтруется не венозная, а артериальная кровь.

Позвоночные имеют замкнутую кровеносную систему. Количество кругов кровообращения и камер в сердце зависит от образа жизни животного и строения ее дыхательной системы. Рыбы имеют две камеры в сердце и один круг кровообращения. Все остальные группы – два круга. Сердце амфибий и рептилий – трёхкамерное, а птиц и млекопитающих – четырёхкамерное.

Артериальная и венозная кровь; круга кровообращения предсердия и желудочки; дуги аорты.

  • Почему через сердце рыб протекает только венозная кровь?
  • Как объяснить отсутствие венозной крови у амфибий?
  • Почему разделяются камеры в сердце позвоночных животных?
  • Пороки сердца у человека часто связаны с наличием отверстия в перегородке между желудочками. Сделайте попытку объяснить, какие последствия имеет такой недостаток.

Двоякодышащие рыбы

К двоякодышащих принадлежат пресноводные рыбы, которые, кроме жабр, имеют легкие. Возникает это приспособление из-за необходимости переживать неблагоприятные условия среды. Двоякодышащая рыбы имеют одну или две легкие развивающихся как выпячивание стенки пищевода. Одна из жаберных артерий идет к легкому, где артериальная кровь дополнительно насыщается кислородом.

Сердце-маятник

Мы уже упоминали представителей подтипа оболочники. Вследствие перехода к сидячему образу жизни оболочники имеют незамкнутую кровеносную систему, а их сердце работает как маятник.

Сначала оно через сосуды закачивает кровь от внутренних органов и направляет его в глотки. Здесь происходит газообмен. Затем начинает качать кровь в обратном направлении.

Такая работа кровеносной системы может быть только у животных с очень медленным обменом веществ.

ПОДІЛИТИСЯ:

« Транспортная система животных Противостояние хищников и жертв »

Источник: https://moyaosvita.com.ua/biologija/krovenosnye-sistemy-pozvonochnyx-zhivotnyx/

Строение сердца животного: клапанный аппарат, оболочка и круги кровообращения

Строение сердца у разных классов позвоночных

Не нужно объяснять, что сердце, даже в организме животного — это самая крепкая мышца. И, естественно, ни одно животное без него не может существовать. Хотя есть некоторые исключения. Этот орган отличается от человеческого, потому что он «модифицирован природой».

Человеческое сердце находится на высшей стадии развития. Благодаря системе клапанов и кардиостимуляторов оно является эффективным насосом, который снабжает весь организм кровью. Благодаря циркуляции крови в венах и артериях в организм поступают питательные вещества, полученные из еды во время пищеварения и эффективного газообмена.

У животного

Если кровь не достигает органа в течение нескольких минут, в этом месте происходят необратимые изменения в тканях и их гибель из-за отказа функционирования. Поэтому сердце животного постоянно бьется. Ритм органа состоит из последовательных спазмов тела. Тональность ударов соответствует сокращениям полостей сердца и их диастолы.

Строение

Как упоминалось ранее, строение сердца животных – это мышца конусовидного вида. С основанием базис кордис и верхушки апекс кордис, обращенной кранио-вентрально. У животных сердце четырехкамерное с двумя предсердиями и таким же количеством желудочков. Предсердие у основания органа почти незаметно.

С наружной стороны желудочки и предсердия разделены большой бороздой. Ушки немного выпячиваются. В них располагаются гребешкообразные мышцы, которые при сокращении способствуют выталкиванию крови. Оставшуюся площадь занимают вентрикулюм (желудочки). Внутри сердце разделено на две половины: правое и левое предсердия.

Они между собой не сообщаются.

Из левого вентрикулюма выходит аорта, она у основания разделена на плечеголовной ствол и грудную аорту.

Плечеголовной ствол кровоснабжает переднюю часть туловища. С грудной аортой все намного сложнее. Она входит в грудную полость, затем в диафрагму и теперь уже называется – брюшной аортой, потом в области крестцовых позвонков выходит в среднюю крестцовую артерию. Но и на этом ее путь не заканчивается, она попадает в хвостовую часть тела животного.

Строение правого желудочка сердца у млекопитающих

Из правого желудочка выходит артерия в легкие. Потом разделяется на две части (ствола), ведущих к правой стороне легкого и левой стороне легкого.

Система кровообращения

По закономерности хода сосудов существуют те, которые выводят кровь в сердце. И те, которые приносят.

Система кровообращения является одной из многих систем в организме, необходимых для правильного функционирования и работы сердца животного.

Без кровеносных сосудов органические частицы, содержащиеся в пище, не могли бы доставляться в органы и ткани. Система кровообращения также удаляет ненужные продукты обмена веществ (токсины).

Эти функции идентичны для позвоночных и беспозвоночных животных. И существующие различия в структуре этой системы между группами развивались в ходе эволюции.

Сердце домашних животных – четырехкамерное. А кровообращение происходит путем сокращений клапанного аппарата сердца. Кровь течет в одном направлении. А стенки сердца состоят из:

  • внутреннего слоя эндокарда;
  • среднего слоя миокарда;
  • наружного слоя эпикарда.

Кровообращение и строение органа у позвоночных животных

Сердце позвоночных животных и система кровообращения состоит из тех же элементов, то есть сердца, вен, артерий, аорты и кровеносных сосудов. Наблюдаются различия в структуре системы кровообращения, которые имели место в ходе эволюции. В основном они касаются строения органа, и были связаны со смещением легочной системы.

Кровообращение и особенности сердца у простейших позвоночных

Рассмотрим, как устроено сердце хордовых животных. У простейших позвоночных – рыб – оно состоит из четырех камер: артериального конуса, желудочка, преддверия и венозной пищевода.

Кровь течет из артериального конуса в аорту. А затем в жабры, где она насыщается кислородом. Затем, пройдя через брюшную аорту, доставляет кровь ко всем тканям.

Напротив, кровь из вен попадает в венозный синус.

У некоторых рыб есть особые изменения в структуре кровеносных сосудов, подобные тем, что сохранились у современных амфибий. Предполагается, что амфибии произошли от этих групп рыб.

В сердцах амфибий атриум был разделен на два левых, правых и венозный отсеки, имеет выход в левый вестибюль. Сокращение желудочков заставляет неоксигенированную кровь выталкиваться из правого предсердия в аорту и, следовательно, во многие мелкие легочные артерии.

Окисленная кровь в правом предсердии поступает в желудочки сердца животных.

И покидает его в конце сокращения. Кровь из правого желудочка не может попасть в легочные артерии, потому что они наполнены кровью, которая ранее была инфузирована. Кровь может течь через орган несколько раз без полного кровообращения вокруг тела. Это связано с явлением смешивания насыщенной кислородом и раскисленной крови в камере сердца.

У земноводных

У рептилий и земноводного животного сердце в артериальном конусе и камере имеет особую перегородку. С исчезновением жабр в венозных амфибиях и артериях жаберных дуг эволюция создала комбинацию дорсальной и брюшной аорт.

Эти соединения называются дугами аорты и всего кровообращения — большой путь кровообращения, происходит у рыб. В связи с приобретением легких в дыхательной функции этих животных развилось второе кровообращение.

Называемое легочным или малым.

Несовершенство кровеносной системы земноводных заключается в перемешивании крови в камере. Кровь, текущая из легких, не насыщается кислородом в достаточной степени. Она смешивается с той, которая течет через ткани. И оставляет там слишком много кислорода.

Также смешивается с кровью, протекающей через кровеносные сосуды в коже, приобретая там определенное количество кислорода.

Из-за трудностей, вызванных смешиванием насыщенной кислородом крови с некислородной эволюцией системы кровообращения, она перешла к отделению венозной крови от путей артериальной.

Особенности рептилий

Сердце животного такого вида имеет перегородку в камере, однако она неполная. Полная перегородка, разделяющая правую и левую камеры, расположена в сердце птиц и млекопитающих.

У животных этих групп кровь полностью не смешивается. Артериальный конус уменьшен и образует только основу аорты и легочных артерий.

Чтобы кровь могла полностью циркулировать через тело животного, она должна дважды проходить через камеры сердца у животных.

Поэтому у птиц и млекопитающих кровь насыщается кислородом намного лучше, чем та, что протекает в организме низших животных. Сильно насыщенная кислородом жидкость позволяет заметно повысить метаболизм и, таким образом, поддерживать постоянную температуру тела животного даже в холодных условиях. Благодаря этому птицы и млекопитающие являются теплокровными.

Строение органа у простых беспозвоночных

Простые беспозвоночные организмы не имеют отдельной системы кровообращения. Питательные вещества внутри клетки переносятся на основе диффузии.

У некоторых простейших организмов (например, амеб) пищевые соединения распространяются в организме из-за цитоплазматических движений, которые наблюдаются во время движения животного.

В тех простых организмах, которые не могут двигаться из-за жесткой структуры тела, частицы пищи распространяются посредством ритмичного протекания через цитоплазму их тела.

В камерах используется впитывающая полость — для расщепления, для пищеварения и для транспортировки питательных частиц по всему организму. Эти самые частицы из впитывающей полости попадают в свои клетки в результате диффузии и оттуда распространяются по всему телу. Этот транспорт дополнительно облегчает движения животного.

Животные без сердца

Разделим наземных беспозвоночных на две группы. К первой из них относятся организмы, независимые от воды, но живущие во влажной среде. Это обитатели почвы, растений (например, коры) живых организмов (черви и паразиты человеческого тела), влажных камней и пещер.

Во время засухи они умирают или претерпевают формы спор. Вот некоторые из них: плоские черви, нематоды пресноводных и олигохеты, такие как дождевые черви и некоторые пиявки.

Организмы, принадлежащие ко второй группе, стали независимыми от воды, достигнув довольно высокой активности (это различные насекомые и пауки).

У простых животных, таких как пищевые черви, пища попадает внутрь тела через рот и переваривается в желудочной полости. Всю работу сердечной мышцы выполняет система кровообращения, регулируемая сосудистой системой и тесно взаимосвязанная с пищеварительной.

Частицы пищи попадают в клетки внутренних слоев путем диффузии. Эти слои проникают в средний слой с большими межклеточными пространствами, в которых течет тканевая жидкость.

Такая жидкость транспортирует питательные вещества ко всем клеткам, этому транспорту помогают сокращения мышц, происходящие в стенке тела.

Среди беспозвоночных есть виды, которые имеют замкнутую систему кровообращения. Примером могут быть глисты. У этих животных есть кровь и кровеносные сосуды, однако недифференцированные в вены и артерии. Вся система кровообращения состоит из двух крупных сосудов — брюшного и спинного, кровь которых течет в противоположных направлениях.

В брюшной полости — спереди назад, а в спинной — обратно. Меньшие кровеносные сосуды, снабжающие кровью кожу, кишечник и другие части тела, выходят из этих крупных сосудов. Поток крови из брюшной полости в дорсальный желудочек позволяет разместить пять пульсирующих сосудистых пар в передней части тела. Благодаря им кровеносная система закрыта.

Орган у моллюсков и членистоногих

У членистоногих и моллюсков уже наблюдается примитивное мешковатое развитие сердца животных.

Их кровеносная система состоит из кровеносных сосудов, которые транспортируют кровь от сердца к особым трещинам, откуда она распределяется по всему телу. Обойдя все ткани, жидкость возвращается в эти сосуды. И из них – в сердце.

Во время циркуляции крови в организме ткани и органы снабжаются кислородом и питательными веществами, и из них удаляются ненужные и вредные вещества.

Заключение

Итак, мы рассмотрели, как устроено сердце различных животных. Как видите, это весьма ответственный орган в любом живом организме. И не только для человека так важно сердце.

Источник: https://FB.ru/article/454912/stroenie-serdtsa-jivotnogo-klapannyiy-apparat-obolochka-i-krugi-krovoobrascheniya

Позвоночные

Строение сердца у разных классов позвоночных

Позвоночных считают высшим подтипом типа Хордовые. В то время как оболочников и бесчерепных — низшими хордовыми. Позвоночных животных насчитывается более 40 тысяч видов. Они разнообразны по строению, размерам, жизнедеятельности, средам обитания. При этом имеют ряд общих черт, особенно в период эмбрионального развития, что говорит об общности их эволюционного происхождения.

Почти все позвоночные животные имеют высокоразвитую нервную систему и ведут активный образ жизни (ищут пищу и партнеров для размножения, убегают от опасности).

Первые обнаруженные остатки позвоночных относятся к силуру.

К позвоночным принадлежат: круглоротые, хрящевые и костные рыбы, земноводные, пресмыкающиеся, птицы и млекопитающие (звери). Круглоротые являются бесчелюстными. Остальные классы подтипа относятся к разделу Челюстноротые.

Опорно-двигательная система позвоночных

Ароморфозы: формирование осевого скелета в форме позвоночного столба; появление черепа для защиты головного мозга; развитие челюстей для схватывания добычи и, у более высокоорганизованных, измельчения пищи; возникновение парных конечностей, позволяющих быстро перемещаться в пространстве.

Скелет позвоночных хрящевой или костный (у большинства). Его главные функции — это обеспечение движения животного и защита его внутренних органов. Кроме этого кости скелета служат местом прикрепления мускулатуры тела, в отдельных костях происходит кроветворение, осуществляется хранение ряда веществ.

Позвоночник образуется на основе хорды. У ряда видов позвоночных (миног) хорда сохраняется во взрослом состоянии, но около нее развиваются хрящи, защищающие спинной мозг. У осетровых вокруг хорды образуются верхние и нижние дуги позвонков.

У большинства позвоночных позвоночник состоит из отдельных относительно подвижных друг относительно друга позвонков. Каждый позвонок имеет тело, верхнюю и нижнюю дуги. Через канал верхней дуги проходит спинной мозг. Дуги позвонков служат защитой спинному мозгу. К позвонкам крепятся ребра, защищающие органы грудной полости.

Скелет позвоночных делят на:

  • Осевой скелет — позвоночник и мозговой череп.
  • Висцеральный скелет — жаберные дуги и кости произошедшие от жаберных дуг (челюсти и некоторые другие).
  • Скелет конечностей и их поясов (за исключением миног и миксин).

Конечности бывают двух основных типов — плавник и пятипалая конечность. В плавнике хрящи или кости конечности перемещаются относительно своего пояса как единый рычаг. Пятипалая конечность наземных животных представляет собой ряд рычагов, независимо перемещающихся относительно друг друга и пояса конечности.

Мускулатура тела образована поперечно-полосатыми мышцами. У высших позвоночных (пресмыкающиеся, птицы, млекопитающие) мышцы разделены на отдельные пучки. У низших позвоночных мышцы носят сегментированный характер.

Есть гладкая мускулатура внутренних органов. Ее называют висцеральной.

Нервная система и органы чувств позвоночных

Ароморфозы: образование головного мозга, подразделение его на пять отделов, выполняющих разные функции (передний, промежуточный, средний, продолговатый мозг и мозжечок).

Нервная трубка у позвоночных дифференцируется на спинной и головной мозг, которые вместе образуют центральную нервную систему. Кроме нее выделяют периферическую, симпатическую, парасимпатическую и вегетативную нервную системы.

Развитый головной мозг обеспечивает сложное поведение, в том числе коллективное. Высшая нервная деятельность является основой приспособительного поведения.

Невроцель (полосто внутри нервной трубки) в головном мозге превращается в желудочки мозга. От головного мозга отходят 10-12 пар нервов (обонятельные, зрительные, глазодвигательные, блоковые, тройничные, отводящие, лицевые, слуховые, языкоглоточные, блуждающие, добавочные, подъязычные). От спинного мозга нервы отходят попарно.

Органы чувств обеспечивают связь организма с внешней средой. У позвоночных они многообразны и имеют сложное строение. Глаза с хрусталиком, форма которого у наземных позвоночных может меняться. У рыб для достижения четкости изображения хрусталик может перемещаться.

Органы слуха связаны с органами равновесия. У различных групп позвоночных имеют разное строение. Обонятельная полость открывается наружу ноздрями. В коже имеются рецепторы осязания, температурные, давления и др.

Кровеносная и сердечно-сосудистая система позвоночных

Ароморфозы: появление сердца, обеспечивающего быстрый кровоток; полное разделение артериального и венозного кровотока у птиц и млекопитающих, в следствие этого появление теплокровности, позволившая животным меньше зависеть от неблагоприятных условий абиотической среды.

Для позвоночных, как и всех хордовых, характерна замкнутая кровеносная система.

Количество камер сердца (от 2 до 4) зависит от уровня организации класса. Низшие позвоночные имеют один круг кровообращения. В таком случае через сердце проходит венозная кровь, которая далее идет к жабрам, где насыщается кислородом, далее артериальная кровь разносится по всему телу. Легочный (второй) круг кровообращения впервые появляется у амфибий (земноводных).

Кровь позвоночных состоит из плазмы, в которой находятся красные и белые кровяные клетки.

Кожный покров позвоночных

Ароморфоз: появление двухслойной кожи.

Поверхностный слой кожи — многослойный эпидермис. В нем развиваются различные железы (потовые, сальные, слизистые и др.) и ряд твердых образований (когти, волосы, перья, чешуя). Внутренний слой кожи — дерма, представляющей собой прочную соединительную ткань. Здесь также образуются такие твердые образования как костная чешуя, кожные (накладные) кости.

Пищеварительная система позвоночных

В пищеварительной системе позвоночных выделяют пять отделов: ротовая полость, глотка, пищевод, желудок, тонкая кишка, толстая кишка. В процессе эволюции кишечник постепенно удлинялся.

Пищеварительные железы: слюнные, печень, поджелудочная железа.

Дыхательная система позвоночных

Жабры у круглоротых, рыб и личинок земноводных. Легкие — у всех остальных позвоночных. У низших позвоночных большую роль играет кожное дыхание.

Жабры представляют собой пластинчатые выросты стенок жаберных щелей. В таких пластинах находится сеть мелких кровеносных сосудов.

В процессе эмбрионального развития легкие образуются как пара выростов глотки. У земноводных и пресмыкающихся легкие мешкообразные. У птиц имеют губчатое строение. У млекопитающих разветвления бронхов оканчиваются альвеолами (мелкими пузырьками).

Выделительная система позвоночных

Органами выделения позвоночных служит пара почек. Почки имеют разное строение у разных групп позвоночных. Бывают головные, туловищные, тазовые почки. В процессе эмбриогенеза происходит смена головных на туловищные или туловищных на тазовые.

Половая система и эмбриональное развитие позвоночных

Почти все виды позвоночных раздельнополы. Имеются парные половые железы (семенники или яичники). За исключением круглоротых, у остальных есть специальные протоки, выводящие половые продукты.

Челюстноротых разделяют на две группы: анамнии и амниоты. К анамниям относятся рыбы и земноводные, так как их личиночная стадия живет в воде, а развитие эмбриона проходит без образования специальных зародышевых оболочек. Для анамний обычно наружнее оплодотворение.

К амниотам относятся пресмыкающиеся, птицы и звери. Их эмбрион имеет зародышевые оболочки (амнион и аллантоис). Характерно внутреннее оплодотворение.

plustilino © 2019. All Rights Reserved

Источник: https://biology.su/zoology/vertebrate

Расшифрован молекулярный механизм превращения трехкамерного сердца в четырехкамерное • Новости науки

Строение сердца у разных классов позвоночных

Появление четырехкамерного сердца у птиц и млекопитающих было важнейшим эволюционным событием, благодаря которому эти животные смогли стать теплокровными.

Детальное изучение развития сердца у эмбрионов ящерицы и черепахи и сравнение его с имеющимися данными по амфибиям, птицам и млекопитающим показало, что ключевую роль в превращении трехкамерного сердца в четырехкамерное сыграли изменения в работе регуляторного гена Tbx5, который функционирует в изначально едином зачатке желудочка. Если Tbx5 эспрессируется (работает) равномерно по всему зачатку, сердце получается трехкамерным, если только с левой стороны — четырехкамерным.

Выход позвоночных на сушу был связан с развитием легочного дыхания, что потребовало радикальной перестройки кровеносной системы. У дышащих жабрами рыб один круг кровообращения, а сердце, соответственно, двухкамерное (состоит из одного предсердия и одного желудочка).

У наземных позвоночных — трех- или четырехкамерное сердце и два круга кровообращения. Один из них (малый) прогоняет кровь через легкие, где она насыщается кислородом; затем кровь возвращается к сердцу и попадает в левое предсердие.

Большой круг направляет обогащенную кислородом (артериальную) кровь ко всем прочим органам, где она отдает кислород и по венам возвращается к сердцу, попадая в правое предсердие.

У животных с трехкамерным сердцем кровь из обоих предсердий попадает в единый желудочек, откуда она затем направляется и к легким, и ко всем прочим органам. При этом артериальная кровь в той или иной степени смешивается с венозной.

У животных с четырехкамерным сердцем в ходе эмбрионального развития изначально единый желудочек подразделяется перегородкой на левую и правую половины.

В результате два круга кровообращения оказываются полностью разделены: венозная кровь попадает только в правый желудочек и идет оттуда к легким, артериальная — только в левый желудочек и идет оттуда ко всем прочим органам.

Формирование четырехкамерного сердца и полное разделение кругов кровообращения было необходимой предпосылкой развития теплокровности у млекопитающих и птиц.

Ткани теплокровных животных потребляют очень много кислорода, поэтому им необходима «чистая» артериальная кровь, максимально насыщенная кислородом, а не смешанная артериально-венозная, которой довольствуются холоднокровные позвоночные с трехкамерным сердцем (см.: Филогенез кровеносной системы хордовых).

Трехкамерное сердце характерно для амфибий и большинства рептилий, хотя у последних намечается частичное разделение желудочка на две части (развивается неполная внутрижелудочковая перегородка).

Настоящее четырехкамерное сердце развилось независимо в трех эволюционных линиях: у крокодилов, птиц и млекопитающих. Это считается одним из ярких примеров конвергентной (или параллельной) эволюции (см.

: Ароморфозы и параллельная эволюция; Параллелизмы и гомологическая изменчивость).

Большая группа исследователей из США, Канады и Японии, опубликовавшая свои результаты в последнем номере журнала Nature, задалась целью выяснить молекулярно-генетические основы этого важнейшего ароморфоза.

Авторы детально изучили развитие сердца у эмбрионов двух рептилий — красноухой черепахи Trachemys scripta и ящерицы анолиса (Anolis carolinensis).

Рептилии (кроме крокодилов) представляют особый интерес для решения поставленной задачи, поскольку строение их сердца по многим признакам — промежуточное между типичным трехкамерным (таким, как у амфибий) и настоящим четырехкамерным, как у крокодилов, птиц и зверей.

Между тем, по утверждению авторов статьи, вот уже 100 лет никто всерьез не изучал эмбриональное развитие сердца рептилий.

Исследования, выполненные на других позвоночных, до сих пор не дали однозначного ответа на вопрос о том, какие генетические изменения обусловили формирование четырехкамерного сердца в ходе эволюции.

Было, однако, замечено, что регуляторный ген Tbx5, кодирующий белок — регулятор транскрипции (см. транскрипционные факторы), по-разному работает (экспрессируется) в развивающемся сердце у амфибий и теплокровных.

У первых он равномерно экспрессируется по всему будущему желудочку, у вторых его экспрессия максимальна в левой части зачатка, из которой в дальнейшем формируется левый желудочек, и минимальна справа.

Обнаружилось также, что уменьшение активности Tbx5 ведет к дефектам в развитии перегородки между желудочками. Эти факты позволили авторам предположить, что изменения в активности гена Tbx5 могли сыграть какую-то роль в эволюции четырехкамерного сердца.

В ходе развития сердца ящерицы в желудочке развивается мышечный валик, частично отделяющий выходное отверстие желудочка от его основной полости.

Этот валик некоторыми авторами трактовался как структура, гомологичная межжелудочной перегородке позвоночных с четырехкамерным сердцем. Авторы обсуждаемой статьи на основе изучения роста валика и его тонкой структуры отвергают эту трактовку.

Они обращают внимание на то, что такой же валик ненадолго появляется и в ходе развития сердца куриного эмбриона — наряду с настоящей перегородкой.

Полученные авторами данные свидетельствуют о том, что у ящерицы никаких структур, гомологичных настоящей межжелудочной перегородке, по-видимому, не формируется. У черепахи, напротив, формируется неполная перегородка (наряду с менее развитым мышечным валиком). Формирование этой перегородки у черепахи начинается намного позже, чем у цыпленка.

Тем не менее получается, что у ящерицы сердце более «примитивное», чем у черепахи. Сердце черепахи занимает промежуточное положение между типичным трехкамерным (таким как у амфибий и ящериц) и четырехкамерным, таким как у крокодилов и теплокровных. Это противоречит общепринятым представлениям об эволюции и классификации рептилий.

На основе анатомических признаков черепах традиционно считали самой примитивной (базальной) группой среди современных рептилий. Однако сравнительный анализ ДНК, проведенный рядом исследователей, раз за разом упрямо указывал на близость черепах к архозаврам (группе, включающей крокодилов, динозавров и птиц) и на более базальное положение чешуйчатых (ящериц и змей).

Строение сердца подтверждает эту новую эволюционную схему (см. рисунок).

Авторы изучили экспрессию нескольких регуляторных генов в развивающемся сердце черепахи и ящерицы, в том числе гена Tbx5.

У птиц и млекопитающих уже на очень ранних стадиях эмбриогенеза в зачатке желудочков образуется резкий градиент экспрессии этого гена (экспрессия быстро убывает слева направо).

Оказалось, что у ящерицы и черепахи на ранних стадиях ген Tbx5 экспрессируется так же, как у лягушки, то есть равномерно по всему будущему желудочку.

У ящерицы такая ситуация сохраняется до конца эмбриогенеза, а у черепахи на поздних стадиях формируется градиент экспрессии — по существу, такой же, как у цыпленка, только выраженный слабее. Иными словами, в правой части желудочка активность гена постепенно снижается, а в левой остается высокой. Таким образом, по характеру экспрессии гена Tbx5 черепаха тоже занимает промежуточное положение между ящерицей и курицей.

Известно, что белок, кодируемый геном Tbx5, является регуляторным — он регулирует активность многих других генов.

На основе полученных данных естественно было предположить, что развитие желудочков и закладка межжелудочковой перегородки идут под управлением гена Tbx5.

Ранее уже было показано, что уменьшение активности Tbx5 у мышиных эмбрионов ведет к дефектам в развитии желудочков. Этого, однако, было недостаточно, чтобы считать доказанной «руководящую» роль Tbx5 в формировании четырехкамерного сердца.

Для получения более веских доказательств авторы использовали несколько линий генетически модифицированных мышей, у которых в ходе эмбрионального развития ген Tbx5 можно было отключать в той или иной части сердечного зачатка по желанию экспериментатора.

Оказалось, что если выключить ген во всем зачатке желудочков, то зачаток даже не начинает подразделяться на две половинки: из него развивается единый желудочек без всяких следов межжелудочной перегородки.

Характерные морфологические признаки, по которым можно отличить правый желудочек от левого независимо от наличия перегородки, тоже не формируются.

Иными словами, получаются мышиные зародыши с трехкамерным сердцем! Такие зародыши погибают на 12-й день эмбрионального развития.

Следующий эксперимент состоял в том, что ген Tbx5 отключили только в правой части зачатка желудочков. Тем самым градиент концентрации регуляторного белка, кодируемого этим геном, был резко смещен влево.

В принципе, можно было ожидать, что в такой ситуации межжелудочная перегородка начнет формироваться левее, чем положено. Но этого не произошло: перегородка не начала формироваться вовсе, зато наметилось подразделение зачатка на левую и правую части по другим морфологическим признакам.

Это значит, что градиент экспрессии Tbx5 — не единственный фактор, управляющий развитием четырехкамерного сердца.

В другом эксперименте авторам удалось добиться, чтобы ген Tbx5 равномерно экспрессировался во всем зачатке желудочков мышиного эмбриона — примерно так же, как у лягушки или ящерицы. Это опять-таки привело к развитию мышиных эмбрионов с трехкамерным сердцем.

Полученные результаты показывают, что изменения в работе регуляторного гена Tbx5 действительно могли сыграть важную роль в эволюции четырехкамерного сердца, причем эти изменения произошли параллельно и независимо у млекопитающих и архозавров (крокодилов и птиц). Таким образом, исследование еще раз подтвердило, что в эволюции животных ключевую роль играют изменения в активности генов — регуляторов индивидуального развития.

Конечно, было бы еще интереснее сконструировать таких генно-модифицированных ящериц или черепах, у которых Tbx5 экспрессировался бы как у мышей и кур, то есть в левой части желудочка сильно, а в правой — слабо, и посмотреть, не станет ли у них от этого сердце больше похожим на четырехкамерное. Но это пока технически неосуществимо: генная инженерия рептилий еще не продвинулась так далеко.

Источник: Koshiba-Takeuchi et al. Reptilian heart development and the molecular basis of cardiac chamber evolution // Nature. 2009. V. 461. P. 95–98.

Александр Марков

Источник: https://elementy.ru/novosti_nauki/431141/Rasshifrovan_molekulyarnyy_mekhanizm_prevrashcheniya_trekhkamernogo_serdtsa_v_chetyrekhkamernoe

Филогенез кровеносной системы – СРАВНИТЕЛЬНАЯ АНАТОМИЯ СИСТЕМ ОРГАНОВ ПОЗВОНОЧНЫХ – ЗООЛОГИЯ

Строение сердца у разных классов позвоночных

У хордовых животных расположение сосудов очень сходно с расположением их у аннелид. Имеются продольные брюшной и спинной сосуды, связанные между собой анастомозами, проходящие через внутренние органы.

Так как передняя часть кишечника преобразована в дыхательный аппарат, то анастомозы этой области (ранее кишечные сосуды) получают название жаберных сосудов. Сердце представляет собой расширение брюшного сосуда.

В связи с этим возникает первая перестройка кровообращения у хордовых (ланцетник) — ток крови в сосудах имеет обратное направление, чем у аннелид, и пульсирует не спинной, а брюшной сосуд.

Причем брюшной сосуд был прерван посередине системой капилляров печеночного выроста, поэтому пульсирует только передний отдел, лежащий под жаберной областью кишечника. Пульсирующая брюшная аорта гонит кровь вперед, в жаберные перегородки.

Главный артериальный ствол, по которому кровь течет назад, — это спинная аорта.

Вторая перестройка кровообращения связана с появлением сердца, и эволюция кровеносной системы идет по пути увеличения количества камер сердца и дифференцировки сосудов, отходящих от него.

Сердце. Началом развития кровеносной системы у позвоночных является закладка сердца из мезенхимных клеток мезодермы на брюшной стороне зародыша.

Сердце закладывается сначала в виде прямой трубки, напоминающей брюшную аорту ланцетника, которая затем быстро растет и изгибается в виде буквы. Задняя половина извитой трубки, более тонкостенная, загибается на спинную сторону и образует предсердие. Передняя же часть трубки остается на брюшной стороне и образует желудочек с сильно утолщенной мускульной стенкой.

У рыб один желудочек и одно предсердие.

У амфибий предсердие разделено на две половины, которые открываются в желудочек общим отверстием.

У рептилий, птиц и млекопитающих каждое предсердие (их два) имеет самостоятельное отверстие, снабженное клапаном, открывающееся в желудочек. У рептилий желудочек один, но он разделен неполной перегородкой, растущей снизу-вверх. У птиц и млекопитающих желудочек разделяется полностью на две половины.

Сосуды. От сердца вперед развиваются в эмбриональном периоде непарный артериальный ствол (остаток брюшного сосуда — брюшная аорта), от которого отходят крупные парные сосуды — артериальные жаберные дуги, охватывающие глотку и соединяющиеся на спинной стороне со спинной аортой (рис. 3.253).

Рис. 3.253. Схема строения сердца и артериальных дуг у разных классов позвоночных: а — рыбы; б — личинки земноводных; в — хвостатые земноводные; г — пресмыкающиеся; д — птицы; е — млекопитающие. Венозная кровь показана черным цветом. Парные структуры обозначены соответственно: п (правая) и л (левая):

1 — сонная артерия; 2 — жаберные капилляры; 3 — желудочки сердца; 4 — предсердие; 5 — корни спинной аорты; 6 — венозный синус: 7 — спинная аорта; 8 — легочные артерии; 9 — боталлов проток; 10 — легочные капилляры; 11 — вены тела; 12 — легочные вены; III — VI — артериальные дуги (нумерация с учетом передних пар, редуцировавшихся в ходе эволюции). На рис. а в венозный синус впадают кювьеровы протоки, возникающие при слиянии кардиальных вен. На рис. пунктиром показаны сонные протоки, рудименты корней спинной аорты

Число артериальных дуг соответствует числу висцеральных дуг и обычно равно 6 (у рыб 6 — 7).

У зародышей рыб первые две пары жаберных сосудов быстро исчезают, так как две первые жаберные перегородки (висцеральные дуги) включаются в состав лицевого черепа. Следующие (4 — 5 пар) артериальные дуги разделяются на приносящие и выносящие жаберные артерии с сетью соединяющих их капилляров.

У наземных позвоночных (амфибий, рептилий, птиц, млекопитающих) первые две дуги также рано атрофируются, а оставшиеся 4 пары претерпевают характерные преобразования (рис. 3.254).

Рис. 3.254.

Преобразование дуг аорты у позвоночных: а — дуги аорты у зародышей позвоночных; б — рыбы; в — хвостатая амфибия; г — лягушка; д — пресмыкающееся; е — птица; ж — млекопитающее: 1 — 6 — пары дуг аорты; 7 — ствол аорты; 7а — брюшная аорта; 8 — спинная аорта; 9 — легочная артерия; 9а — артерия плавательного пузыря; 10 — сонная артерия; 11 — дуги аорты; 12 — подключичная артерия; 13 — боталлов проток; 14 — сонный проток

Третья пара дуг теряет свою связь со спинной аортой и превращается в сонные артерии, несущие артериальную кровь вперед в головной отдел.

Эмбриональная связь этой дуги со спинной аортой носи: название сонного протока и иногда сохраняется и у взрослого животного (змеи, ящерицы).

Четвертая пара дуг дает начало дугам аорты взрослого животного. Эти дуги симметрично развиты у амфибий и рептилий. У птиц левая дуга редуцируется и сохраняется только правая. У млекопитающих развивается только левая дуга аорты, а правая редуцируется.

Пятая пара дуг исчезает, лишь у хвостатых сохраняется в виде незначительного протока.

Шестая дуга теряет связь со спинной аортой и преобразуется в легочные артерии. Эмбриональная связь легочных артерий со спинной аортой носит название боталлова протока, который сохраняется во взрослом состоянии у хвостатых амфибий, у гаттерии и черепах.

Источник: https://compendium.su/biology/entering_2/124.html

МедВрачеватель
Добавить комментарий